Chapter 9: Derivatives: Exercise

1. Evaluate: (a) \(\lim_{x \to 3} \frac{9 - x^2}{x + 3} \)
 \(\lim_{x \to \infty} \frac{x^2 + x + 1}{2x^2 - x + 3} \)

2. Using the definition
 \[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]
 Find \(f'(x) \) if
 (a) \(f(x) = x^3 - 3x \) \((b) f(x) = \frac{2}{x} \)

3. Find \(\frac{dy}{dx} \) or \(f'(x) \) for
 (a) \(y = 2x^2 + \frac{x}{3} - 2 \)
 (b) \(y = x - \frac{2}{x} \)
 (c) \(f(x) = \frac{x^2 - 2x + 1}{x} \)
 (d) \(y = \frac{x - 1}{\sqrt{x}} \)

4. Find the gradient \(\frac{dy}{dx} = f'(x) \) at the given point.
 (a) \(y = x^2 - 4x \) at \(x = 2 \)
 (b) \(f(x) = \frac{4}{\sqrt{x}} \) at \(x = 4 \)
 (c) \(y = x - \frac{2}{x} \) at \(x = \frac{1}{2} \)

5. Find the equation of the tangent and normal:
 (a) \(y = x^2 + 3x - 1 \) at \(x = -1 \)
 (b) \(y = 2\sqrt{x} \) at \(x = 4 \)

6. Find the derivative:
 (a) \(y = \frac{2x}{x-2} \) \((b) y = (x^2 - 1)^4 \)
 (c) \(y = \frac{-1}{\sqrt{1-x^2}} \) \((d) y = \frac{1}{x+1} + \frac{1}{2x} \)
 (e) \(y = x\sqrt{x^2 + 1} \) \((f) y = \frac{x}{\sqrt{x^2 + 4}} \)
 (g) \(y = x\sqrt{x} \)

7. A curve is defined by the equation
 \(y = f(x) = x^3 - 6x + 4 \)
 (a) Find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \)
 (b) Find the coordinates of the turning points of the curve and identify them.
 (c) Find the point of inflection, if any.
 (d) Sketch the curve for \(-3 \leq x \leq 3\) and find the maximum and minimum values of \(f(x) \).

8. Let \(f(x) = 7 + 4x^3 - 3x^4 \).
 (a) find the coordinates of stationary points
 (b) Find \(\frac{d^2y}{dx^2} \) and hence the point(s) of inflection.
 (c) Determine the nature of stationary points.
 (d) Sketch \(f(x) \) \(-1 \leq x \leq 2\) and determine the maximum and minimum values in the domain.

9. ABCD is a rectangle with the lower base CD on the \(x \) – axis and vertices A and B on the parabola \(y = 12 - x^2 \)

Find the area of the largest (maximum) such rectangle.
10. A rectangular box is open at the top end. The dimensions of box are \(x \), \(2x \) and \(y \) cm.

(a) Show that the surface area of the box is given by \(A = 2x^2 + 6xy \).

(b) Let \(A = 300 \text{cm}^2 \). Show that the volume of the box is given by \(V = 100x - \frac{2x^3}{3} \).

(c) Show that \(x < 5\sqrt{6} \) \((\text{Hint: } v > 0)\)

(d) Find the value of \(x \) for which \(V \) is the maximum. Find \(V_{\text{max}} \).

11. ADF is a triangle with \(\angle D = 90^\circ \)

BCED is a rectangle where

\(BC = 12\text{cm} \), \(CE = 8\text{cm} \), \(AB = x \), \(EF = y \)

(a) Show that \(\triangle ABC \) III \(\triangle ACEF \) and hence \(xy = 96 \)

(b) Show that area of the \(\triangle ADF \) is given by

\[A = 96 + 6x + \frac{384}{x} \]

(c) Find the value of \(x \), so that \(A \) is the minimum.

12. A rectangular poster has a margin of 1cm at the top and bottom ends and 3cm at each side. The region inside the margins is to have a print area of 48\(\text{cm}^2 \).

Show that:

(a) \(y = 6 + \frac{48}{x-2} \)

(b) The area of poster is given by

\[A = 6x + \frac{48x}{x-2} \]

(c) Find the values of \(x \) and \(y \) such that \(A \) is the minimum.

13. Farmer Smith wishes to fence off a triangular property \(\triangle ABC \). On one side there is a river bank where no fence is needed. The fence \(BC \) is common with the farmer Andrew. The area of Smith property is 3600\(\text{m}^2 \), where \(\angle BCA = 90^\circ \). Fencing costs \$60 per metre and Andrew has agreed to pay half the cost of fencing the side \(BC \).

(a) Show that cost of fencing is given by

\[C = 60x + \frac{21600}{x} \] \$\text{dollars.}

(b) Find the value of \(x \), so that \(C \) is the minimum.
A cylinder of radius r and height h is inscribed in a cone of base radius 6 cm and height 20 cm.

(a) Using similar triangles, show that
\[h = \frac{10}{3} (6 - r) \]

(b) Show that volume of the cylinder is given by
\[V = \frac{10\pi r^2 (6 - r)}{3} \text{ cm}^3 \]

(c) Find r and h for which V is the maximum and find V_{max}.

1. (a) \[\lim_{x \to -3} \frac{9-x^2}{x+3} = \lim_{x \to -3} \frac{(3-x)(3+x)}{3+x} \]
\[= \lim_{x \to -3} (3-x) \]
\[= 6 \]

(b) \[\lim_{x \to \infty} \frac{x^2 + x + 1}{2x^2 - x + 3} \text{ divide by } x^2 \]
\[= \lim_{x \to \infty} \left(\frac{1 + \frac{1}{x} + \frac{1}{x^2}}{2 - \frac{1}{x} + \frac{3}{x^2}} \right) \]
\[= \frac{1}{2} \text{ as } \lim_{x \to \infty} \frac{1}{x} = 0 \]

2. (a) \[f(x) = x^2 - 3x \]
\[f(x + h) = (x + h)^2 - 3(x + h) \]
\[= x^2 + 2xh + h^2 - 3x - 3h \]
\[\therefore f(x + h) - f(x) = 2xh + h^2 - 3h \]
\[\therefore f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \frac{2x + h - 3}{h} \]
\[= \lim_{h \to 0} \frac{2x + h - 3}{h} \]
\[= 2x - 3 \]

(b) \[f(x) = \frac{2}{x}, f(x + h) = \frac{2}{x + h} \]
\[f(x + h) - f(x) = \frac{2}{x + h} - \frac{2}{x} \]
\[= \frac{2x - x - 2xh}{x(x + h)} \]
\[f'(x) = \lim_{h \to 0} \frac{-2x}{x(x + h)} + h \]
\[= \lim_{h \to 0} \frac{-2}{x + h}, h \neq 0 \]
\[= -\frac{2}{x} \]

3. (a) \[y = 2x^2 + \frac{1}{3}x - 2 \]
\[\frac{dy}{dx} = 4x + \frac{1}{3} \]

(b) \[y = x - 2x^1, \frac{dy}{dx} = 1 + 2x^2 \]
\[= 1 + \frac{2}{x^2} \]

4. (a) \[y = x^2 - 4x, \]
\[\frac{dy}{dx} = 2x - 4 \]
\[\text{At } x = 2, \frac{dy}{dx} = 0 \]

(b) \[f(x) = 4x - \frac{1}{2}, x = 4 \]
\[f(x) = -2x - \frac{1}{2} \]
\[f'(4) = -2(4)^{-\frac{1}{2}} = -\frac{1}{4} \]

(c) \[y = x - \frac{2}{x} \]
\[x = 2x^1 \]
\[\frac{dy}{dx} = 1 + \frac{2}{x^2} \]
\[= 1 + \frac{2}{x^2} \]

5. (a) \[y = x^2 + 3x - 1, x = -1 \]
\[\frac{dy}{dx} = 2x + 3, y = 1 - 3 - 1 = -3 \]
\[= -2 + 3, x = -1 \]
\[\therefore m = 1 \text{ (gradient), } P(-1, -3) \]

Using \(y - y_1 = m(x-x_1) \)
\[y + 3 = 1(x - 1) \]
\[y = x - 2 \text{ is the equation of tangent.} \]

(b) \[y = 2x^{1/2}, x = 4, y = 4 \]
\[\frac{dy}{dx} = 2x^{1/2}, x^{1/2} = \frac{1}{\sqrt{x}} \]
\[x = 4, m = \frac{1}{\sqrt{4}} = \frac{1}{2} \text{ (grad)} \]

Using \(y - y_1 = m(x-x_1) \)
\[y - 4 = \frac{1}{2}(x - 4) \]
\[x - 2y + 4 = 0 \]
Is the equation of tangent.
6. \(a \) \(y = \frac{2x}{x-2}, \ u = 2x, \ v = x-2 \)

\[
u' = 2, \ v' = 1
\]

\[
\frac{dy}{dx} = \frac{vu' - uv'}{v^2} = \frac{2(x-2) - 2x}{(x-2)^2} = \frac{-4}{(x-2)^2}
\]

\(b \) \(y = (x^2 - 1)^4 \), chain rule

\[
\frac{dy}{dx} = 4x \cdot 2x(x^2 - 1)^3
\]

\[
= 8x(x^2 - 1)^3
\]

\(c \) \(y = -\sqrt{1-x^2} \)

\[
\frac{dy}{dx} = \frac{1}{2} \cdot \frac{-2x}{\sqrt{1-x^2}} - 2x
\]

\[
= x(1-x^2)^{3/2}
\]

\(d \) \(y = 1 + \frac{1}{x} \)

\[
\frac{dy}{dx} = -1 \cdot x^{-2} - \frac{1}{2} \cdot x^{-3}
\]

\[
= \frac{1}{x} \frac{1}{1+x^2} - \frac{1}{2} \cdot \frac{1}{x}
\]

\[
= -3x^2 - 2x - 1
\]

\[
= 2x^2 (1 + x)^2
\]

\(e \) \(y = (x^2 + 1)^2, u = x, v = (x^2 + 1) \)

\[
u' = 1, v' = \frac{x}{\sqrt{x^2 + 1}}
\]

\[
\frac{dy}{dx} = -(uv' + vu')
\]

\[
= x \cdot \frac{x}{\sqrt{x^2 + 1}} + 1 \cdot \sqrt{x^2 + 1}
\]

\[
= \frac{x^3 + x^2 + 1}{\sqrt{x^2 + 1}}
\]

\(f \)

\[
y = \sqrt{x}, x = \sqrt{x}, y' = x^{\frac{1}{2}}
\]

\[
\frac{dy}{dx} = \frac{3}{2} \cdot \sqrt{x} = \frac{3}{2} \cdot \sqrt{x}
\]

7. \(f(x) = x^3 - 6x + 4 \) \(\ldots (1) \)

\(a \) \(\frac{dy}{dx} = 3x^2 - 6 \equiv 3(x^2 - 2) \) \(\ldots (2) \)

\(b \) for the stationary points,

\[
\frac{dy}{dx} = 0 \Rightarrow x^2 = 2 = 0, \ x = \pm \sqrt{2}
\]

\[
x = \sqrt{2}, y = x(x^2 - 6) + 4 = 4 - 4 \sqrt{2}
\]

\[
x = -\sqrt{2}, y = -\sqrt{2} (2-6) + 4 = 4 + 4 \sqrt{2}
\]

\[. \] The stationary points are

\[A(\sqrt{2}, 4-4 \sqrt{2} = -1.6) \]

\[B(-\sqrt{2}, 4 + 4 \sqrt{2} = 9.6) \]

At \(A, x = \sqrt{2}, \ \frac{d^2y}{dx^2} = 6 \sqrt{2} > 0 \)

At \(B, x = -\sqrt{2}, \ \frac{d^2y}{dx^2} = -6 \sqrt{2} < 0 \)

\[. \] : A is the minimum point,

\[B \] is the maximum point.

\(c \) for the point of inflection,

\[f''(x) = 0 \Rightarrow 6x = 0 \]

\[x = 0, y = 4 \Rightarrow C(0, 4) \]

Test:

\[
\begin{array}{c|ccc}
\hline
x & -1 & 0 & 1 \\
\hline
f''(x) & - & 0 & + \\
\hline
\end{array}
\]

\[. \] : \(C(0, 4) \) is the point of inflection.

8. \(y = f(x) = -3x^4 + 4x^3 + 7 \ldots (1) \)

\(a \) \(\frac{dy}{dx} = f'(x) = -12x^3 + 12x^2 \) \(\ldots (2) \)

\[
\frac{d^2y}{dx^2} = -36x^2 + 24x = -12x(x^2 - 2) \ldots (3)
\]

For the stationary points,

\[
f'(x) = 0 \Rightarrow x^2 = (x-1) = 0 \]

\[
x = 0, 1 \Rightarrow A(0, 7), B(1, 8) \]
\((b) \ f''(x) = 0 \Rightarrow x(3x - 2) = 0 \)
\[x = 0 \Rightarrow A(0, 7) \]
\[x = \frac{2}{3} \Rightarrow C \left(\frac{2}{3}, \frac{16}{17} \right) \]
are the possible points of inflection.

Test A (0, \(x \) | -1 | 0 | \(\frac{1}{3} \) | 7)
\[f'''(x) = -1 \quad 0 \quad \frac{1}{3} \quad + \]

\[C \left(\frac{2}{3}, \frac{16}{17} \right) \]
\[x \quad -1 \quad 0 \quad \frac{1}{3} \quad + \quad 0 \quad - \]
\[f''''(x) = \frac{1}{3} \]

\[\therefore \ A \text{ and } C \text{ are the points of inflection.} \]

Since at A
\[\frac{dy}{dx} = 0, \ A \text{ is the horizontal point of inflection.} \]

(c) At B(1,8), \[\frac{d^2y}{dx^2} = -12x(3x - 2) < 0 \]
\[\therefore B \text{ is the maximum point.} \]

\[9. \text{ A = area of the rectangle } ABCD \]
\[= AB \times AD. \ AB = 2x, \ AD = y = 2xy \]

Now \[y = 12 - x^2 \]
\[\therefore A = 2x(12x^2) = 24x - 2x^3 \ldots (1) \]
\[\frac{dA}{dx} = 24 - 6x^2 = 6(4 - x^2) \ldots (2) \]
\[\frac{d^2A}{dx^2} = -12x \ldots (3) \]
\[\frac{dA}{dx} = 0 \text{ for the stationary values} \]
\[\therefore 4 - x^2 = x = \pm 2 \]

We need not concern with \(x = -2 \) as the length AB > 0.

\[\frac{d^2A}{dx^2} = -12 < 0 \text{ for } x = 2 \]
\[\therefore A \text{ is the maximum,} \]
\[A_{\text{max}} = 2x(12 - x^2), \ x = 2 \]
\[= 4 \times 8 \]
\[= 32 \]

\[10. (a) \ S = 2x^2 + 2(2x, y + xy) \]
\[S = 2x^2 + 6xy \]

(b) \[2x^2 + 6xy = 300 \]
\[6xy = 300 - 2x^2 \]
\[y = \frac{50 - x}{3} \]
\[\therefore V = 2x, x, y = 2x^2y \]
\[= 2x^2 \left(\frac{50 - x}{3} \right) \]
\[V = 100x - \frac{2x^3}{3} \ldots (1) \]

(c) \[V > 0 \Rightarrow 2x^2 \left(\frac{50 - x}{3} \right) > 0 \]
Since \(x > 0, 2x^2 \left(150 - x^2 \right) \)
\[\therefore 150 - x^2 > 0 \]
\[x^2 < 150 \Rightarrow x < 5\sqrt{6} \]
(d) \(V = 100x - \frac{2}{3}x^3 \)

\[
\frac{dV}{dx} = 100 - 2x^2 = 2\left(50 - x^2\right)
\]

\[
\frac{d^2V}{dx^2} = -4x
\]

\[
\frac{dV}{dx} = 0 \text{ for the stationary points.}
\]

\[
\therefore 50 - x^2 = 0 \Rightarrow x = \sqrt{50} = 5\sqrt{2} \text{ as the length } x > 0
\]

\[
\frac{d^2V}{dx^2} < 0, 50, v \text{ is the maximum and}
\]

\[
V_{\text{max}} = x\left(100 - \frac{2}{3}x^2\right) = \frac{500\sqrt{2}}{3} \text{ cm}^3
\]

11. (a) From \(\triangle ABC \) and \(\triangle CEF \):

BC/EF (BC and DE are opp sides of a rect)

\[
\therefore \angle C = \angle F \text{ (corres. } \angle s) \\
\angle B = \angle E = 90^\circ
\]

Also AB/CE (BD/CE, a rect)

\[
\therefore \angle A = \angle C \text{ (corres. } \angle S) \\
\triangle ABC \text{ III } \triangle CEF \text{ (AAA)}
\]

\[
x = \frac{12}{8} \frac{y}{y} = \frac{3}{2} (\text{Ratio of corr. Sides})
\]

\[
\therefore xy = 96
\]

(b) \(A = \triangle ADF = \frac{1}{2} DF \times AD \)

Now DF = 12 + y, AD = x + 8

\[
\therefore A = \frac{1}{2}(12 + y)(x + 8)
\]

\[
= \frac{1}{2}(12x + xy + 96 + 8y)
\]

\[
= 6x + 96 + 48 + 4y
\]

\[
= 6x + 96 + \frac{4 \times 96}{x}
\]

\[
\therefore A = 6x + 96 + \frac{384}{x} \quad \ldots(1)
\]

(c) \[
\frac{dA}{dx} = 6 - \frac{384}{x^2}
\]

\[
\frac{d^2A}{dx^2} = \frac{768}{x^3}
\]

For the stationary points,

\[
\frac{dA}{dx} = 0 \Rightarrow 6 = \frac{384}{x^2}
\]

\[
x^2 = 64 \Rightarrow x = 8
\]

\(x > 0, \) so A is the minimum and

\[
A_{\text{min}} = 48 + 96 + 64
\]

\[
= 208 \text{ cm}^2
\]

and \(x = 8 \text{ cm} \)

12. Printed area = \((x - 2)(y - 6)\)

(a) \(48 = (x - 2)(y - 6) \)

\[
\therefore y - 6 = \frac{48}{x - 2}
\]

\[
y = 6 + \frac{48}{x - 2}
\]

(b) \(A = xy \)

\[
= x\left(6 + \frac{48}{x - 2}\right)
\]

\[
\therefore A = 6x + \frac{48x}{x - 2}
\]

(c) \[
\frac{dA}{dx} = 6 + 48 \frac{d}{dx}\left(\frac{x}{x - 2}\right)
\]

\[
= 6 + 48x \frac{x - 2 - x}{(x - 2)^2}
\]

\[
= 6 - \frac{96}{(x - 2)^2}
\]

\[
\frac{d^2A}{dx^2} = -\frac{192}{(x - 2)^3}
\]

\[
\frac{dA}{dx} = 0 \text{ for the stationary points.}
\]

\[
\therefore 6 = \frac{96}{(x - 2)^2}
\]

\[
(x - 2)^2 = 16 \Rightarrow x - 2 = \pm 4
\]

Since \(x > 0, x = 6 \text{ cm} \)

\[
y = 18 \text{ cm}
\]

Also \(\frac{d^2A}{dx^2} = 0 \) for \(x = 6 \)

\(\therefore \) The minimum poster area \(A = 6 \times 18 = 108 \text{ cm}^2 \)

with \(x = 6 \text{ cm}, y = 18 \text{ cm} \)
13. \(A = \text{area of } \triangle ABC = \frac{1}{2} \times xy \)

\[\frac{xy}{2} = 3600 \Rightarrow y = \frac{7200}{x} \]

(a) \(C = 60x + 60y + 2 \)

\[= 60x + 30y \]

\[= 60x + \frac{30 \times 7200}{x} \]

\[\therefore 6x = \frac{21600}{x} \]

(b) \[\frac{dc}{dx} = 60 - \frac{21600}{x^2} \]

For the minimum cost \(\frac{dc}{dx} = 0 \)

\[\therefore x^2 = 3600 \]

\[x = 60 \]

so \(C \) is the minimum for

\[\frac{d^2c}{dx^2} = \frac{43200}{x^3} > 0 \]

\[x = 60 \text{ and} \]

\[C_{\text{min}} = 60 \times 60 + \frac{21600}{60} \]

\[= 7200 \text{ dollars} \]

14. From the similar triangles,

(a) \[\frac{r}{6} = \frac{20 - h}{20} \Rightarrow 20 - h = \frac{10r}{3} \]

\[h = 20 - \frac{10r}{3} \]

\[\therefore h = \frac{10}{3} (6 - r) \]

(b) \(V = \pi r^2 h \)

\[= \pi r^2 \times \frac{10}{3} (6 - r) \]

\[\therefore V = \frac{10}{3} \pi r^2 (6 - r) \ldots (1) \]

\[= \frac{10 \pi}{3} (6r - r^3), \text{keeping constants out} \]

\[\frac{dV}{dr} = \frac{10 \pi}{3} (12r - 3r^2) \]