TRIGONOMETRY

1) Write down the ratios of $\tan \theta$, $\sin \theta$ and $\cos \theta$.

2) Find the exact value of $\sin \theta$, $\csc \theta$, $\sec \theta$ and $\cot \theta$.

3) If $\tan \theta = \frac{6}{11}$, find the exact ratios of $\sin \theta$ and $\cos \theta$.

4) Find the value of x if $\sin 39^\circ = \cos x$.

5) Simplify $\frac{\cot 62^\circ}{\tan 28^\circ}$.

6) Evaluate θ if $\sec (\theta + 40^\circ) = \csc (2\theta - 10^\circ)$.

7) Evaluate $\tan 56^\circ 23'$ correct to 3 decimal places.

8) Find θ in degrees and minutes if $\cos \theta = 0.235$.

9) Find the value of p in the diagram below, correct to one decimal place.
10) Evaluate x to one decimal place.

11) Find θ in degrees and minutes, to the nearest minute.

12) The angle of elevation from Amanda to the top of a tree is $51 \degree 34'$. If Amanda is standing 5 metres out from the base of the tree, how tall is the tree, to one decimal place?

13) A plane leaves Sydney and flies on a bearing of $235 \degree$ for 500 km. How far west of Sydney is the plane, to the nearest km?

14) A bird is perched on top of a 10 m tower, watching a worm down on the ground. If the angle of depression down to the worm is $67 \degree 20'$, how far does the bird need to fly down to catch the worm? Answer to one decimal place.

15) Lee starts a bush walk at Katoomba by walking 4 km due north. She then turns and walks due west for 5 km. Find, to the nearest degree,
 (a) Lee’s bearing from Katoomba
 (b) the bearing of Katoomba from Lee.

16) Find the exact value of $\cos 30 \degree$.

17) Find the exact value of $\tan 60 \degree$.

18) Find the exact value of $\sin 45 \degree$.

19) Find the exact value of $\cos 315 \degree$.

20) Find the exact value of $\sin 240 \degree$.

21) Find the exact value of $\tan (-210 \degree)$

22) In which quadrants is $\tan x > 0$?

23) In which quadrants is $\cos x < 0$?

24) In which quadrant is $\tan x < 0$ and $\sin x < 0$?

25) Given $\sin \theta = \frac{3}{5}$ and $\tan \theta < 0$, find the exact values of $\cos \theta$ and $\cot \theta$.

26) Solve $2 \sin \theta = 1$ for $0 \degree \leq \theta \leq 360 \degree$.

27) Solve $\tan \theta = \sqrt{3}$ for $-180 \degree \leq \theta \leq 180 \degree$.

28) Solve $2 \cos 2\theta = -1$ for $0 \degree \leq \theta \leq 360 \degree$.

hscintheholidays.com.au All Rights Reserved. Page 2 of 8
29) Solve \(\sin^2 \theta = \frac{1}{2} \) for \(0^\circ \leq \theta \leq 360^\circ \).

30) Solve \(\cos \theta = 1 \) for \(0^\circ \leq \theta \leq 360^\circ \).

31) Sketch the graph of \(y = \sin x \) for \(0^\circ \leq \theta \leq 360^\circ \).

32) Sketch the graph of \(y = \cos x \) for \(0^\circ \leq \theta \leq 360^\circ \).

33) Sketch the graph of \(y = \tan x \) for \(0^\circ \leq \theta \leq 360^\circ \).

34) Simplify \(\sin \theta \cdot \csc \theta \).

35) Simplify \(\sqrt{9 - 9 \cos^2 \alpha} \).

36) Simplify \(\sin \theta + \sin \theta \cdot \cot^2 \theta \).

37) Prove that \(\frac{\sec^2 \beta - \tan^2 \beta}{\sin \beta} = \csc \beta \).

38) Prove that \(\frac{1}{1 + \tan^2 \theta} = (1 - \sin \theta)(1 + \sin \theta) \).

39) Evaluate \(x \) to one decimal place.

40) Evaluate \(\theta \) in degrees and minutes, to the nearest minute.

41) (a) Evaluate \(n \) correct to one decimal place.
 (b) Find the area of the triangle correct to 3 significant figures.
42) Find θ in degrees and minutes, to the nearest minute.

![Diagram](image)

43) Adrian measures the angle of elevation of the top of a tower as 25° and Jane measures the angle of elevation as 30°. Jane is standing 10 metres closer to the tower than Adrian.

![Diagram](image)

(a) Find the length of BJ to two decimal places.
(b) Hence find the height of the tower to one decimal place.

44) A ship sails for 270 km from Sydney on a bearing of 055°. It then turns and sails for 380 km on a bearing of 120°. How far is the ship from Sydney, to the nearest km?

45) ABCDE is a regular pentagon with sides 3 cm. Point F is drawn so that $AF = BF = CF = DF = EF$.

(a) Find the size of $\angle AFB$.
(b) Show that the interior angle sum of the pentagon is 540°.
(c) Find the length of AF to one decimal place.
ANSWERS

1) $\tan \theta = \frac{4}{3}, \sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}$
2) $\sin \theta = \frac{\sqrt{95}}{12}, \csc \theta = \frac{12}{\sqrt{95}}, \sec \theta = \frac{12}{7}, \cot \theta = \frac{7}{\sqrt{95}}$
3) $\sin \theta = \frac{6}{\sqrt{157}}, \cos \theta = \frac{11}{\sqrt{157}}$
4) $x = 51^0$
5) 1
6) $\theta = 20^0$
7) 1.504
8) $\theta = 76^0 25'$
9) $p = 5.8$
10) $x = 9.2$
11) $\theta = 37^0 42'$
12) 6.3 metres
13) 410 km
14) 10.8 metres
15) (a) 309^0 (b) 129^0
16) $\frac{\sqrt{3}}{2}$
17) $\sqrt{3}$
18) $\frac{1}{\sqrt{2}}$
19) $\frac{1}{\sqrt{2}}$
20) $-\frac{\sqrt{3}}{2}$
21) $-\frac{1}{\sqrt{3}}$
22) 1st and 3rd
23) 2nd and 3rd
24) 4th
25) $\cos \theta = -\frac{4}{5}, \cot \theta = -\frac{4}{3}$
26) $\theta = 30^0, 150^0$
27) $\theta = 60^0, -120^0$
28) $\theta = 60^0, 120^0, 240^0, 300^0$
29) $\theta = 45^0, 135^0, 225^0, 315^0$
30) $\theta = 0^0, 360^0$
34) \(1 \)
35) \(3\sin \alpha \)
36) \(\cosec \theta \)
37) LHS
 \[\frac{\sec^2 \beta - \tan^2 \beta}{\sin \beta} = \frac{1 + \tan^2 \beta - \tan^2 \beta}{\sin \beta} \]
 \[= \frac{1}{\sin \beta} \]
 \[= \cosec \beta \]
 RHS
 \[\therefore \frac{\sec^2 \beta - \tan^2 \beta}{\sin \beta} = \cosec \beta \]
38) LHS
 \[\frac{1}{1 + \tan^2 \theta} \]
 \[= \frac{1}{\frac{\sec^2 \theta}{\sec^2 \theta}} \]
 \[= \cos^2 \theta \]
 RHS
 \[= (1 - \sin \theta)(1 + \sin \theta) \]
 \[= 1 - \sin^2 \theta \]
 \[= \cos^2 \theta \]
\[LHS = RHS \]

\[\therefore \frac{1}{1 + \tan^2 \theta} = (1 - \sin \theta)(1 + \sin \theta) \]

39) \(x = 9.4 \text{ cm} \)

40) \(\theta = 52^\circ 25' \)

41) (a) \(n = 4.9 \text{ m} \) (b) \(4.61 \text{ m}^2 \)

42) \(\theta = 113^\circ 32' \)

43) (a) \(BJ = 48.49 \text{ m} \) (b) \(24.2 \text{ m} \)

44) \(551 \text{ km} \)

45) (a) \(72^\circ \) (b) \(S = 180n - 360^\circ = 540^\circ \) (when \(n = 5 \)) (c) \(2.6 \text{ cm} \)